1.Overview of the Map Interface

Map is one of the core interfaces in the Java Collections Framework, used for storing key-value pairs. Unlike List and Set, Map is not a subinterface of the Collection interface but an independent top-level interface. Each key in a Map is unique, but values can be duplicated.

Basic Characteristics of Map

  • Keys must be unique, while values can be duplicated
  • One key can only map to one value
  • Different keys can map to the same value
  • Both keys and values can be null (depending on the specific implementation)

2.Core Methods of the Map Interface

Basic Operation Methods

// Add a key-value pair
V put(K key, V value)

// Get the value for a specified key
V get(Object key)

// Remove the key-value pair for a specified key
V remove(Object key)

// Check if a specified key is contained
boolean containsKey(Object key)

// Check if a specified value is contained
boolean containsValue(Object value)

// Get the size of the Map
int size()

// Check if the Map is empty
boolean isEmpty()

// Clear the Map
void clear()

Bulk Operation Methods

// Add all key-value pairs from another Map to the current Map
void putAll(Map<? extends K, ? extends V> m)

// Get a set of all keys
Set<K> keySet()

// Get a collection of all values
Collection<V> values()

// Get a set of all key-value pairs
Set<Map.Entry<K, V>> entrySet()

3.Detailed Explanation of Main Implementation Classes

3.1 HashMap

HashMap is the most commonly used implementation class of the Map interface, based on a hash table.

Features:

  • Allows null keys and null values
  • Not thread-safe
  • Stores elements in an unordered manner
  • Average time complexity: O(1)

Internal Structure:

  • Before JDK 1.8: Array + Linked List
  • JDK 1.8 and later: Array + Linked List + Red-Black Tree
// HashMap example
Map<String, Integer> hashMap = new HashMap<>();
hashMap.put("apple", 10);
hashMap.put("banana", 20);
hashMap.put("orange", 15);

// Traverse HashMap
for (Map.Entry<String, Integer> entry : hashMap.entrySet()) {
    System.out.println(entry.getKey() + ": " + entry.getValue());
}

3.2 LinkedHashMap

LinkedHashMap inherits from HashMap and maintains insertion order or access order.

Features:

  • Maintains insertion order or access order
  • Implemented based on hash table and doubly linked list
  • Slightly lower performance than HashMap
// LinkedHashMap example
Map<String, Integer> linkedHashMap = new LinkedHashMap<>();
linkedHashMap.put("first", 1);
linkedHashMap.put("second", 2);
linkedHashMap.put("third", 3);

// Output order is consistent with insertion order
linkedHashMap.forEach((k, v) -> System.out.println(k + ": " + v));

3.3 TreeMap

TreeMap is implemented based on a red-black tree and is an ordered Map.

Features:

  • Sorts according to the natural order of keys or a custom Comparator
  • Does not allow null keys, but allows null values
  • Time complexity: O(log n)
// TreeMap example
Map<String, Integer> treeMap = new TreeMap<>();
treeMap.put("zebra", 26);
treeMap.put("apple", 1);
treeMap.put("banana", 2);

// Output in lexicographical order of keys
treeMap.forEach((k, v) -> System.out.println(k + ": " + v));
// Output: apple: 1, banana: 2, zebra: 26

3.4 ConcurrentHashMap

ConcurrentHashMap is a thread-safe implementation of HashMap.

Features:

  • Thread-safe
  • High concurrency performance
  • Does not allow null keys and null values
  • Uses segment lock mechanism (changed to CAS + synchronized in JDK 1.8)
// ConcurrentHashMap example
Map<String, Integer> concurrentMap = new ConcurrentHashMap<>();
concurrentMap.put("thread1", 1);
concurrentMap.put("thread2", 2);

// Atomic operations
concurrentMap.putIfAbsent("thread3", 3);
concurrentMap.computeIfAbsent("thread4", k -> 4);

4.Advanced Features and Methods

4.1 Methods Added in JDK 1.8

Map<String, Integer> map = new HashMap<>();
map.put("a", 1);
map.put("b", 2);

// getOrDefault - Get the value, return default if not present
Integer value = map.getOrDefault("c", 0); // Returns 0

// putIfAbsent - Add if the key does not exist
map.putIfAbsent("c", 3);

// replace - Replace the value of the specified key
map.replace("a", 10);

// compute - Calculate a new value
map.compute("a", (k, v) -> v * 2); // The value of a becomes 20

// merge - Merge values
map.merge("d", 1, (oldVal, newVal) -> oldVal + newVal);

4.2 Using with Stream API

Map<String, Integer> map = new HashMap<>();
map.put("apple", 10);
map.put("banana", 20);
map.put("orange", 15);

// Filter and collect to a new Map
Map<String, Integer> filtered = map.entrySet().stream()
    .filter(entry -> entry.getValue() > 10)
    .collect(Collectors.toMap(
        Map.Entry::getKey,
        Map.Entry::getValue
    ));

// Transform values
Map<String, String> transformed = map.entrySet().stream()
    .collect(Collectors.toMap(
        Map.Entry::getKey,
        entry -> "Count: " + entry.getValue()
    ));

5.Performance Comparison and Selection Recommendations

Performance Comparison Table

Implementation ClassLookupInsertionDeletionOrderingThread Safety
HashMapO(1)O(1)O(1)NoneNo
LinkedHashMapO(1)O(1)O(1)Insertion orderNo
TreeMapO(log n)O(log n)O(log n)Key-sortedNo
ConcurrentHashMapO(1)O(1)O(1)NoneYes

Selection Recommendations

Use HashMap when:

  • You need the fastest lookup, insertion, and deletion operations
  • You don’t need to maintain order
  • Working in a single-threaded environment

Use LinkedHashMap when:

  • You need to maintain insertion order or access order
  • You need to implement an LRU cache

Use TreeMap when:

  • You need sorting by keys
  • You need range query functionality

Use ConcurrentHashMap when:

  • Working in a multi-threaded environment
  • You need high concurrency performance

6.Best Practices and Considerations

6.1 Correctly Overriding hashCode() and equals()

public class Person {
    private String name;
    private int age;
    
    @Override
    public boolean equals(Object obj) {
        if (this == obj) return true;
        if (obj == null || getClass() != obj.getClass()) return false;
        Person person = (Person) obj;
        return age == person.age && Objects.equals(name, person.name);
    }
    
    @Override
    public int hashCode() {
        return Objects.hash(name, age);
    }
}

6.2 Setting Initial Capacity

// Setting initial capacity can improve performance if the Map size is known
Map<String, Integer> map = new HashMap<>(16);

// For data with known size, calculate an appropriate initial capacity
int expectedSize = 100;
int initialCapacity = (int) (expectedSize / 0.75) + 1;
Map<String, Integer> optimizedMap = new HashMap<>(initialCapacity);

6.3 Avoiding Concurrent Modification Exceptions

Map<String, Integer> map = new HashMap<>();
map.put("a", 1);
map.put("b", 2);

// Incorrect approach - will throw ConcurrentModificationException
// for (String key : map.keySet()) {
//     if (key.equals("a")) {
//         map.remove(key);
//     }
// }

// Correct approach - using Iterator
Iterator<Map.Entry<String, Integer>> iterator = map.entrySet().iterator();
while (iterator.hasNext()) {
    Map.Entry<String, Integer> entry = iterator.next();
    if (entry.getKey().equals("a")) {
        iterator.remove();
    }
}

6.4 Using Immutable Maps

// Create an immutable Map
Map<String, Integer> immutableMap = Map.of(
    "apple", 10,
    "banana", 20,
    "orange", 15
);

// Or use Collections.unmodifiableMap()
Map<String, Integer> originalMap = new HashMap<>();
originalMap.put("a", 1);
Map<String, Integer> unmodifiableMap = Collections.unmodifiableMap(originalMap);

7.Practical Application Scenarios

7.1 Cache Implementation

public class LRUCache<K, V> extends LinkedHashMap<K, V> {
    private final int maxSize;
    
    public LRUCache(int maxSize) {
        super(16, 0.75f, true); // accessOrder = true
        this.maxSize = maxSize;
    }
    
    @Override
    protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
        return size() > maxSize;
    }
}

7.2 Word Frequency Counting

public Map<String, Integer> countWords(String text) {
    Map<String, Integer> wordCount = new HashMap<>();
    String[] words = text.toLowerCase().split("\\s+");
    
    for (String word : words) {
        wordCount.merge(word, 1, Integer::sum);
    }
    
    return wordCount;
}

7.3 Grouping Operations

// Group students by grade
List<Student> students = getStudents();
Map<String, List<Student>> studentsByGrade = students.stream()
    .collect(Collectors.groupingBy(Student::getGrade));
Avatar

By BytePilot

Because sharing makes us better. Let’s learn, build, and grow — one byte at a time.

Leave a Reply

Your email address will not be published. Required fields are marked *